FSE PROGRAM SUMMARY DOCUMENT #35

Transfer Function Routine XFRRUN

R. E. McFarland

November 1990

NASA

National Aeronautics and
Space Administration

Document: FSE PROGRAM SUMMARY #5, orig. Feb. 15, 1990, final Nov. 1, 1990

Title: Transfer Function Routine XFRRUN

Author: R. E. McFarland, NASA

Function: Real-time solution to arbitrary-order ratios of Laplace polynomials using
various discrete realization algorithms.

Availability: (1) SIMDEV VAX, $DISK [}STRIKEJXFRRUN.FOR
(2) FSD VAX, SLIBRARY:[STRIKEJXFRSET.FOR
(3) ADDEY VAX, $DISK 1 [MCFARLAND.STRIKE]XFRSET.FOR
(4) Author, PC Diskette

Language: FORTRAN, Computer Portable, ANSI Standard

References: (1) Transfer Function Routine XFRSET, FSE Program Summary Docu-
ment #4, R. E. McFarland, Feb. 1990.

(2) On Optimizing Computations for Transition Matrices, R. E. McFar-
land, IEEE Trans. Automatic Control, Vol. AC-23, No. 3, June 1978.

(3) Digital Signal Processing, Alan V. Oppenheim and Ronald W. Schafer,
Prentice~Hall, Inc., 1975.

(4) State Variables for Engineers, Paul M. DeRusso, Rob J. Roy and
Charles M. Close, Wiley & Sons, Inc., New York, 1967.

(5) Analyzing Delays in a Flight Simulation Environment, R. E.
McFarland and J. W. Bunnell, ATIAA-90-3174, Flight Simulation
Technologies Conference, Sept. 17-19, 1990, Dayton, Ohio.

Summary

Transfer functions are usually presented in Laplace form, and in order to simulate them
on a digital computer system a "discrete realization technique" is required. Many such
techniques exist, but none of them produce the exact characteristics of the original con-
tinuum formulation. Response differences occur because of the assumptions, and
because of the finite cycle time "T", where certain techniques degrade faster than others
as a function of the cycle time, and display different characteristics over the discrete
bandwidth (limited by the Nyquist criterion). Of all the available techniques, state space
techniques are superior. For example, a stable transfer function always produces a stable
discrete realization using state space techniques, independent of the cycle time.

At the Ames flight simulation laboratory state space techniques are utilized fully. This
means that Lapace functions are combined whenever possible, in order to create transfer
functions of the highest order. The results are invariably better than those obtained
using piecemeal integration and differentiation operators. This combination process is
limited only because of "embedded nonlinearities."

Unlike other techniques, a state space formulation requires a "data hold." This is the

-1-

pure form of modeling; the Laplace transform becomes the "pulse transform" that actu-
ally represents data in a digital computer, i.e., only a series of pulses is available, one at
each and every "I". The programming engineer must merely make a decision about the
behavior of the data between the sampling instants (guided by knowledge about the
characteristics of the particular input data). If values are indeed assumed to vanish
between sampling instants then the z-transform of the pulse transform is the function
that should be directly coded. This assumption is generally not very useful in flight
simulation, however. More realistic data hold assumptions are discussed herein. Addi-
tionally, the "data hold" will be seen to influence the proper time of output applicability.
"Advancing" and "concurrent” forms are discussed.

This document is the second in a series of three: XFRSET, XFRRUN and
XFRBOD. Together, these three documents describe a discrete realization process for
the solution to arbitrary ratios of polynomial transfer functions, using state space tech-
niques. The first document, FSE Program Summary Document #4, XFRSET, explains
how the transition matrix,

Y11 Y12 Yis *°° YiN
Y21 Y22 Y23 <+ T2N
[r] - Y31 7Ys2 Tzsz °*°=+ V3N

° 3 e .

| N1 TNz YNs c°° UNN

and forcing function vector

[A]= .

L AN+1_

are created, and placed in a buffer SETB. This buffer is a function of the denominator
coefficients "a " and the cycle time "T". The document (see ref. 1) also previews how
this buffer can be used for the transition of the states of the system.

The transition process is best performed by subroutine XFRRUN, the subject of this
paper. In addition, subroutine XFRRUN handles the linear combination of numerator
coefficients for more general ratios of polynomial transfer functions. These transfer
functions are assumed to have the form,

y(s) by 1SM + bysM L+ L+ bys + by

N N-1
u(s) sY 4 ans + .+ 8,8 + 2

where M < N. In ref. 1 (XFRSET) it is shown how this Nth order system is equivalent

to the state variable equations for a linear system given by,

i

x(t) = Ax(t) + U(t)

y(t)

Bx(t)

where A is the essential matrix of the system expressed in canonical form,

[a] -

O 10 O O
© ++s0 O B
O 0 1 O
L]
L]
R ess O O O

_al "az "'33 c e e _aN

the input is a scalar,

U(t) = .

L B

and the B matrix couples the state variables to the output.

The above matrix equations are a state space representation of a single-input N*® order
linear differential equation. Such a system arises naturally from the Laplace description
of a typical transfer function defined by the ratio of polynomials, when M < N. For the
case of M = N it will be shown that solutions are also available, although they involve
approximations when "advancing holds" are used.

As an extension to the foundation document of ref. 2, the "XFR" software includes
options for three different data hold assumptions: (1) the zero-order data hold, in which
the output is purportedly advanced one cycle from the input; (2) the first-order data
hold, in which the output is (also) advanced by one cycle; and (3) the triangular data
hold, where the output is concurrent with the input. For this last case the system may
also include M = N without the necessity of using an approximation.

XFRRUN propagates the state variables depending upon the selected data hold.
Although XFRRUN is primarily intended for the solution of transfer functions using
only state space techniques, an additional option is also available. XFRRUN will also
produce the bilinear transform (Tustin) solution to an arbitrary-order transfer function.
This algebraic substitution technique is discussed in Appendix A, and is included in the
software and documentation for completeness. Hopefully, users will make comparisons

-3-

between the triangular data hold and the bilinear technique and discover that triangular
hold solutions are as good, and in some cases vastly superior to solutions using the bili-
near transform (e.g., as in the case of a notch filter). This is because the bilinear trans-
form manifests "frequency warping", as discussed in ref. 3.

The third program in this series, XFRBOD, produces gain and phase data for any of the
selected options, and also establishes baseline comparison values from the original
Laplace transfer functions.

Calling Sequence

CALL XFRRUN (IMODE, IHOLD,T,N,A,M,B,SETB,RUNB,U,Y)

The calling sequence for this program contains the following quantities:

IMODE

IHOLD

A()

B()

Conventional mode value (as in BASIC common, where this common is not
used in the XFR-~software).

The selected data hold:

IHOLD = 0 designates the zero-order data hold, advancing the output
by one cycle from the input (for step inputs).

IHOLD = 1 designates the first-order data hold, advancing the output
by one cycle from the input.

IHOLD = 2 designates the triangular data hold, with output concurrent
with the input.

IHOLD = 3 designates the bilinear algorithm, with output concurrent
with the input. Calls to XFRSET are not required using this option.

The cycle time, in seconds.

The order of the denominator s-plane polynomial (I £ N £ 20 is the cur-
rent software dimension limitation).

A vector dimensioned N or greater, consisting of the denominator coeffi-
cients a,. A(N+l) is not required; it is always assumed unity. (It usually
takes N + 1 coefficients to express an N*? order polynomial).

The order of the numerator s-plane polynomial. Usually M < N, but equal
order systems M = N permitted if IHOLD = 2. (For M = N the advancing
holds must use an approximation, which should be avoided).

A vector dimensioned M + 1 or greater, consisting of the numerator coeffi-
cients b_. B(M+1) is not assumed to have a specific value (unlike A(N+1)),
and therefore must be included in the vector.

SETB() A buffer unique to the denominator of dimension of at least N2 + N + 1.
This buffer is computed by XFRSET, and used by XFRRUN.

RUNB() A buffer unique to the input and state variables. This buffer must be
dimensioned at least N + 1. As shown below, this buffer is used for a
repository of the system states (first N cells) and the previous value of the
input (the last, i.e., N+1%t cell).

U The scalar input.

The scalar output.

Setup Function

A call to subroutine XFRSET is required to obtain the buffer SETB. XFRSET, as
explained in ref. 1, is called initially and, for nonstationary denominator coefficients,
may be called periodically, or whenever these coefficients change "significantly."
Although "significantly" is not a well defined term in this context, the slowly-varying
coefficient hypothesis would have it that coefficient frequency content be much lower
than the input/output frequency content. Also, engineering judgement dictates that dis-
crete changes in the location of the poles should not excite the transfer function. Hence,
for nonstationary transfer functions some care should be exercised in the selection of the
period of calling XFRSET.

If the call to XFRSET must occur every cycle, then it is doubtful that the transfer func-
tion itself is amenable to a Laplace representation.

If only the bilinear option is to be used (IHOLD = 3), a state space solution is not pro-
duced; hence, a call to XFRSET is not required.

Run Function

XFRRUN is called in all modes (IMODE) in simulation models. Its calling sequence
contains "U", the scalar input, and "Y", the scalar output. In I.C. mode (IMODE < 0) the
output is the input times the transfer function’s D.C. gain, if any, and zero otherwise.

The states are themselves available to the calling program in the buffer RUNB. Thus,
the default 1.C. option may be overridden, and initial conditions may be imposed on all
integrators in the system.

XFRRUN’s procedures vary with THOLD, as is shown below. An understanding of
these procedures is required for the proper use of the software. This involves a consid-
eration of the concept of "state." Also, users must understand the difference between an
"advancing" data hold and a "concurrent” data hold.

"The state of a discrete time system can be intuitively defined as the minimum amount
of information about the system which is necessary to determine both the output and the
future states of the system, if the input function is known." (Ref. 4). In this document
the states of a system are defined as the outputs of integrators, where "x" is used to

designate the state vector, "x " is used to define an individual (spatial) element in the

-5~

state vector, and "xn,k" is used to define the nth element at the discrete time t = kT ("k"
is referred to as the "temporal index"). This state vector definition reduces the expres-
sion for the scalar output "y(k)" to a simple linear combination of states and numerator
coefficients.

For simulation models at Ames, the outputs of any aero, control or engine module should
be concurrent with the beginning of the cycle. This is because these outputs are gener-
ally proportional to forces or moments and, at the end of the cycle, subroutine STRIKE
(or SMART) combines these module outputs, applicable at t,, and integrates them to
velocities and positions, which are then applicable at t,;, or the beginning of the next
interval (or end of the current interval). Since the computer workload "T" has accrued
during this interval, these values are then immediately applicable for output and data
storage, with the time stamp t,, ,. (Note, however, that the inputs and accelerations are
all applicable at time stamp t,.

Hence, advances in module outputs, wherein transfer functions usually reside, are erro-
neous. Gross errors in the time subscript, sometimes called "temporal index" problems,
produce phase errors of up to 180° (at the Nyquist frequency).

Temporal index problems arise when a transfer function is inadequately prepared for
discrete realization. Although advances in tofal module outputs are almost invariably
undesirable, this does not mean that advancing options are not useful. Indeed, internal
to various modules they are often required, especially in feedback paths. The feedback
path that closes on the pilot, however, is completely handled by the Ames kinematic
structure (STRIKE or SMART). Fig. 1 demonstrates this fact.

The three basic data hold options available in XFRRUN are (1) IHOLD = 0, the zero-
order data hold, which advances the output by one cycle, (2) IHOLD = 1, the first-order
data hold, which also advances the output by one cycle, and (3) IHOLD = 2, the trian-
gular data hold, which delivers an output that is concurrent with the input. Whenever
possible, the triangular hold should be used. The bilinear transform technique, available
when THOLD = 3, should be avoided.

Within XFRRUN the state vector x is created each computer cycle, and is placed in the
first N cells of the buffer RUNB. The "spatial index" is "n" (n = 1, 2, ... N), and X, is
used to designate the (n-1)%* derivative of the primary state x,. Since this discussion
concerns discrete systems, the temporal index (k) designates the time point of applicabil-
ity (t = kT),

~k

The individual elements of this state vector, including up to the (N-1)%t derivative for
the NP order polynomial, may be expressed by differentiation with respect to time:

dn-1x(t)
(%), = —— (t=KT), (n=12,.N), (k=0,1,2,.)
dtn-l

The cell RUNB(N+1) is used for storing the previous input u,_;.

6(z) Input
———-—{ Ccontrol |——
€(2) Control concurrent
with input.
v(z) —— Aero }—— u(z)
w(z) Acceleration concurrent
with input.
| 271 l l z™1 l Feedback loop delay.
T(3 - z71) Advancing acceleration-
2(1 - z71) to-velocity integration.
zv(z) Advanced velocity.
T(1 + z71) Concurrent velocity-to-
2(1 - z71) position integration.
zu(z) Advanced position.
== == Forward-loop computer
z™7! z7!
[z=t] [zt] P
Velocity and ition
v(2) u(z) 1ty and positi

output.

Fig. 1 - Ames Integration Flow Structure

Data Holds

The buffer SETB is available to XFRRUN once XFRSET has been called. The three
data hold options within XFRRUN provide for three different state-space methods of
transition. The first two (IHOLD = 0, 1) advance the output one cycle from the input,
and the third (IHOLD = 2) produces a concurrent output. The equations that update the
states are given as follows:

IHOLD = 0 (Zero Order Hold, Advancing)

a0 0 MM

X
g = [r] T +

> s 0 a2 > M

%
z

S k41 - N+1

If the transfer function was simply integration f(s) = 1/s, this IHOLD would produce the
Euler integration algorithm (advanced output):

Yier = Vi + Ty
(For integration examples the numerator is unity; hence (y, = xp).

The "concurrent form" of a z-transform is here defined as explicitly showing the advan-
cing functionality, if any. In creating block diagrams, for example, this is very useful
because computer delays and feedback paths are then also included in the graphics (see
ref. 5).

Procedure

A procedure for developing the concurrent form of a difference equation and the correct
z-transform equivalent to the difference equation is as follows: Shift the indices such
that the input’s highest index is "k", designated as "current", and let the output subscripts
take their appropriately-shifted index values. This produces a realizable system (real
and nonanticipative) providing that the resultant highest index of the output is "k" or
higher, If this is the case the system is realizable (and hence capable of being simulated
in real time). Then, solve for the highest-indexed output value, where the order of the
index displays the number of shifts. This establishes "k" as the input point (referencing
the "time of the input"), and if the highest index of the output is also "k", the transfer
function does not produce a time shift. Indeed, a time shift becomes immediately obvi-
ous using this technique, and should be retained in the z-transform description of the
process, because a direct comparison may then be made with a continuum functionality
f(s). In the process of creating a z-transform equivalent of the difference equation,
variables with the subscript "k" are assigned the power z° = 1 in the z-transform repre-
sentation. For example, in the case of Euler integration we write the shifted output as,

zy(z) T

u(z) 1-21

which may be directly compared to f(s) = 1/s (at the input point). This defines out
"concurrent form", clearly displaying the shifted output in this case. The phase of this
function relative to integration 1/s produces a lead of T/2. Then, if the end-of-cycle
performance is desired, the computer delay z~1 is used to multiply this expression. This
then produces the well-known delay of T/2 resultant from Euler integration.

-8-

IHOLD = 1 (First Order Hold, Advancing)

Xl xl kZZ)‘ 1
X, X, >‘3)‘2 [uk = uk-l]
L) = P L] + L) u + T
: [] . . 3 T
X X h hy

. N k+1 . N K B N+1 J B N |

If the transfer function was simply integration f(s) = 1/s, IHOLD = 1 would produce the
Adams second order integration algorithm (advanced output):

Vier = Vi + 1Ty - u)

This produces the Adams second-order integration algorithm in the form of a concurrent
z-transform (with explicit shifts),

zy(z) T3 - z71)

u(z)] -2zt

where the phase lead is shown (use of concurrent z-transforms means that block dia-
grams then show computer delays as they occur).

A discussion on concurrent forms may be found in ref. 5. Also, the documentation on

subroutine XFRBOD will further explore difference equations and their equivalent
z-transform representations.

IHOLD = 2 (Triangular Hold, Concurrent)

xl xl AZ >\1
X2 [:l X2 Xs Ao [uk = uk_1]
= r . + . u_; +
. . h . T
RS RS N | AN+l | AN

If the transfer function was simply integration f(s) = 1/s, IHOLD = 2 would produce the
triangular integration algorithm, also known as trapezoidal integration.

Ye = Vi1 + 1T(u +u)
The triangular hold algorithm is generally superior to all others when the input function-

ality is assumed to consist of representative samples of continuous data. An "advancing
form" of the triangular hold is not possible.

IHOLD = 3 (Bilinear Transform, Concurrent)

The bilinear transform (Tustin) is not a state-space technique. It is interesting to note
that for single integration, and single integration only, the bilinear transform produces
the same result as the triangular algorithm. Indeed, this fact partially accounts for its
undeserved popularity (the main reason is undoubtedly its simplicity). The bilinear
transform, which should not be preferred over the triangular data hold, also does not
permit an "advancing form." A generalized form of the bilinear transform is discussed
in Appendix A.

Numerator Combinations

XFRRUN performs two distinct jobs. The first job, involving only the denominator
coefficients, is the propagation of the state vector "x". This job is complicated by the
different algorithms available for the various data holds. The second job is the linear

combination of states with the numerator coefficients, producing the scalar output "y".
This job is complicated in the case of equal order systems (M = N).

Considering the linear combination of states required to compute the scalar output "y",
M + | states must be available. For M < N, all M + 1 states are indeed available from
the above XFRRUN procedures, regardless of whether a concurrent or advancing hold is
used. Hence, using the numerator coefficients b_, for a concurrent data hold the output
is,
M+1
Y = Yx = Z bmxm,k
mz=]1
and for an advancing hold the output is,
M+1
Y = Vpq = Z b X ket

ma=1

The concurrent triangular hold solution (IHOLD = 2) also permits a solution for equal-
order systems (M = N) because of the relationship,

ANerk = Y © Z a,Xnx

n=1

which is just a restatement of the original (denominator) transfer function. This equa-
tion therefore provides the missing state derivative when M = N,

-10-

However, a problem arises when M = N using the advancing holds. This problem is
easily seen by shifting all of the "k" temporal subscripts in the above equation to "k+1".
The derivative of the N*t state (required when M = N) may only be obtained for advan-
cing options by approximating u,,, the future value of the input (anticipatory)!

The software of XFRRUN does allow M = N in the case of advancing holds, but the
user is cautioned that the approximation u,,, ~ u, is used. The Bode plot software of
XFRBOD will clearly show the errors produced by using this approximation.

The buffer RUNB is used to store the previous value of the state vector (x), and the
previous value of the input (u). Hence, it must have the dimensions of N + 1. This
buffer must be unique for each transfer function call regardless of whether the denomi-
nator coefficients (and hence SETB) are the same. This is because these quantities
depend upon (1) the previous and current inputs, (2) the selected data hold, and (3) the
previous states.

Examples

First Example

In the first example we have a control system module with input U and output Y, as
acted upon by the transfer function given by,

s
f¢s) = ———
(s+r,)s+r1,)

Since the output of this system (in the Ames simulation environment) eventually will
produce a force or moment, the concurrent hold IHOLD = 2 is used. The pertinent code
is,

DIMENSION A(2),B(2),SETB(7),RUNB(3)
DATA R1/2/,R2/3/,B/0,1/,N/2/,M/1/,T/0.02/

C ONE SHOT:
A(1) = R1*R2
A(2) = R1 + R2
CALL XFRSET(T,N,A,NTERM,SETB)

C ALL MODES:
CALL XFRRUN(IMODE,2,T,N,A,M,B,SETB,RUNB,U,Y)

Second Example

In our second example we assume that the transfer function has a feedback path, with
nonstationary gain "G". Later this functionality will be combined with the original
transfer function, as it should be whenever possible. This form is shown here because it
is illustrative of what must be done if the feedback path contains a limiter.

-11-

+ Y
L M+ £(s)

Fig. 2 - System With Feedback

Expanding from the first example, we only need one extra buffer, and one extra call to
XFRRUN to developed the advanced output (IHOLD = 1):

DIMENSION RUNF (3)
C
C ALL MODES:
UM = U - YF
CALL XFRRUN (IMODE, 2,

, SETB, RUNB,UM, Y)
CALL XFRRUN (IMODE,1,T,

B,
G,SETB, RUNF, UM, YF)

N,A,M,
N,A,O,

"Y" is the output, and "YF" is the advanced output, as required in the input equation.
Note that only one SETB buffer is required in this contrived example; the transfer func-
tions may be written with identical denominators by changing only the numerators.

Third Example

For a third example, consider coefficient variations in real time. Since "G" is a numera-
tor gain, the above example does not require further effort. However, suppose the
denominator coefficients change with, say, altitude. Then, since XFRSET need only be
called periodically, we would have something like the following complete system:

DIMENSION A(2),B(2),SETB(7),RUNB(3)
DIMENSION RUNF (3)
DATA N/2/,M/1/,K/10/,B/0,1/

c
C ALL MODES:
K=K+ 1
IF (K.GE.10) THEN
K =1
A(1) = R1*R2
A(2) = Rl + R2
CALL XFRSET(T,N,A,NTERM,SETB)
END IF
c

UM = U ~ YF
CALL XFRRUN (IMODE,

2,T,N,A,M,B,SETB,RUNB,UM, Y)
CALL XFRRUN (IMODE,1,T,N,A,0,G,S

ETB, RUNF, UM, YF)

-12-

Fourth Example

For the fourth and final example (but see Appendix B), we note that despite the fact
that nonstationary coefficients may be present in the system, the transfer function
should be represented in a form that takes advantage of the state space techniques. This
produces the new function,

]

f(s) =
(s+1r)s+1,)+G

such that the entire system is handled by,

DIMENSION A(2),B(2),SETB(7),RUNB(3)
DATA N/2/,M/1/,K/10/,B/0,1/
c
C ALL MODES:
K=K+ 1
IF(K.GE.10) THEN
K =1
A(l) = R1*R2 + G
A(2) = Rl + R2
CALL XFRSET(T,N,A,NTERM,SETB)
END IF

CALL XFRRUN (IMODE,2,T,N,A,M,B,SETB,RUNB,U,Y)

Concluding Remarks

The XFR- software constitutes a very powerful tool for the real-time solution to arbi-
trary ratios of transfer functions.

The third document in the "XFR" series deals with Bode data. The gain and phase of a
discrete representation are useful for comparison with the original continuum transfer
function, and for isolating coding errors when using XFRRUN.

For simulation models at Ames, the outputs of any aero, control or engine module
should be concurrent with the beginning of the cycle (i.e., use IHOLD = 2), since the
integrations in STRIKE (or SMART) require linear and angular accelerations that are
applicable at the beginning of the interval.

If M = N the advancing holds (IHOLD = 0 or 1) use the approximation u,, = u,. This
could produce completely erroneous results. However, the concurrent triangular hold
(IHOLD = 2) is exact.

The ITHOLD = 3 option should be avoided unless you are quite confident that its appli-
cation will not significantly distort results. For the case of notch filters it must be
avoided because of frequency warping, i.e., the notch will not be where you want it to
be. This distortion will also occur with more simple systems, where the distortion, for

-13-

example, of the cutoff frequency, will be a function of the ratio of the cutoff frequency
to the Nyquist frequency.

The XFR-~ software replaces the following software:

(1) FACT and UPDATE
(2) TACT
(3) SOLUS
(4) SFILTER
(a) INTEG
(b) FOLO
(¢) FOHI
(d) SOLO
(e) NSFOLO

-14-

Appendix A

The Bilinear Transform

The bilinear transform is also known as the Tustin algorithm. By writing the N*h order
differential equation as a set of N first-order equations, this technique is seen to consist
of integrating each of these differential equations by use of numerical approximations to
integrals. This method should be avoided unless distortion in the frequency axis can be
tolerated or compensated. For instance, the bilinear transform will not accurately simu-
late a notch filter without frequency prewarping (which requires extensive massage in
gain/phase space). Even lowpass filters with linear phase characteristics cannot be
obtained by applying the bilinear transformation to analog lowpass filters with linear
phase characteristics (Ref. 4, p. 211).

The technique reduces to an algebraic substitution for "s" wherever it appears in the
Laplace form of the transfer function,
2(z - 1)

s
T(z + 1)

where "z" is the z-transform operator that may easily be used to develop difference equa-
tions. Defining x _, as the ntP state at time t = kT, the bilinear transform produces the
states from state derivatives using repeated trapezoidal integrations (n = 1, 2, ..., N),

- L
Xnx = Fppr FOET (Xt X40001)

except that the (starting) derivative of the N*! state is not a state. It is given by,

N

XNsrk & Y T Z apX; x

n=1

and is itself a function of the integrals. This does not appear to be very useful because
the states are determined from their derivatives. However, using induction on these
processes, a convolution occurs which permits expressing the highest derivative in terms
of the current input and only previous states:

N N
- Z {(%T)j'lzamw { X1 ¥ G3T) i1 0 :I}
ji=1 nz=j

XNtk =
N
Lo
s Z(ﬁT)JaNﬂ—j
j=1

-15-

Hence, for a polynomial system of any order, the concurrent, highest derivative may be
determined, and it is a sufficient kernel for the development of all of the states. This
occurs because of the repeated integration structure of the bilinear transform.

As in the case of the triangular hold formulation, the numerator terms of the transfer
function may be included by a simple linear combinations of available terms.

M+1
yk = 2 bmxm,k

m=1
The numerator order may thus be as large as the denominator order (M = N).
Note that, similar to the preferable triangular data hold algorithm, an "advancing form"
is not available. Also, both of these algorithms will be up to 180° out of phase if they
are used in feedback paths.
The bilinear transform method is an available option in both subroutine XFRRUN, and
subroutine XFRBOD. For this option, which is selected by IHOLD = 3, a call to the
setup routine XFRSET is not required (using this option the buffer SETB is ignored).

Using the bilinear transform algorithm, both nonstationary numerator and denominator
coefficients are permitted by XFRRUN.

-16-

Appendix B
Double Integration
Examples using the various ITHOLD options are developed here. The complete function

in these examples is given by the impulse response to the transfer function,

1

e(s) =
s[(s + ®)? + ﬁZ]

and by consulting any table of Laplace transfer functions the "baseline" output is given
for all time (t 2 0) by,

vy = {1-e[a/p)sinpt) + cos(B]} /(a2 + £2)

The sample problem is separated into components here for illustrative purposes. In order
to separate the transform into a time-varying input and a discrete modeling portion that
consists of double integration, the original function is separated into the two Laplace
functions,

f(s) 1 y(s)
—— & ———

Fig. 3 - Separated Problem

where f(s) = s2e(s) such that,

S

f(s) =
(s +)2 + B?

The driving function f(t) may then be produced from Laplace tables:
(@ = e%[cos(B) - (a/p)sin(ar)]

Hence, the separated problem may be shown as the sample-data system,

IHOLD
f(t) y(t)

1

s?

Fig. 4 - Sample-Data System

-17-

where "THOLD" designates a discrete realization process operating on the function 1/s2.
The separation of these functions has important implications. Hopefully, the reader
realizes that the z-transform of a Laplace product is not the product of z-transforms,

Z{f(s)g(s)} 5 Z{f(s)}Z{g(s)}

When we say that f(s) is the impulse transform f *(s), producing f(z) and hence f(kT), we
must make some assumption about the behavior of the data between the sample points.
This is usually done using a data hold function H(s). We may then write,

wm) = f@L{HEEE}
where in this particular case g(s) = 1/s2.

Here we consider four such processes, and one additional process which is the algebraic
substitution technique known as both the "bilinear transform" and the "Tustin algorithm".
In order to compare the responses to that of the original continuum formulation y(t),
note that the "advancing forms" (of the hold function) include one cycle of advance.
The complete set of possibilities may then be shown by Fig. 5.

Zero-Order
THOLD=0
1 Y(t+DgoLp=0
s2
THOLD=1 First-Order
1 Y(t+DgoLp=1
SZ
Triangular
IHOLD=2 g
e 1 Y(O1roLp=2
Bilinear
IHOLD=3
1 Y(OmoLp=s
52
Ames System
THOLD=1 THOLD=2 mes Sy
y(t+T)
1 1
S S

Fig. 5 - Five Discrete Procedures

-18-

In Fig. 5 it should be noticed that the Ames System is the only segmented option stu-
died. In this system double integration consists of the Adams-Bashforth algorithm
(resultant from the first-order data hold) followed by the trapezoidal algorithm (resultant
from the triangular hold). This procedure is not the same as the bilinear algorithm
operating upon the double integration process. Although the bilinear algorithm operat-
ing on the single integration process reduces to the same form as that of the triangular
hold algorithm, this is not true for other functions of "s". For example, in z-transform
notation the bilinear algorithm operating on double integration is given by,

Z{1/5 Yoo = () (o))

z? -2z + 1

whereas the triangular algorithm produces,

T2, 22 +4z + 1
Z{I/32 }Triangular = ()(- 27 + 1)
and the combination of Adams-Bashforth and triangular hold algorithms produces,
T2 322 +2z - 1
20 = (P25
{1/5 o 4) \z(z2 -2z + 1)

The bilinear algorithm and the triangular hold solution are seen to be different for
double integration. The Ames system is seen to be an "advancing form".

For the double integration problem a call to XFRSET (it does not use IHOLD) will pro-
duce the numerical equivalent to the following transition matrix,

SENHN

and the numerical equivalent to the following forcing function vector,

T3 /6
[a] = T2 /2
T

In order to show how these matrix equations may be reduced to scalar sets, the zero-
order hold is developed here in detail. By using the transition equations of XFRRUN,
the zero-order hold (IHOLD = 0) case produces outputs according to,

Virr = (K = (X)) + T(xy)y + 4Ty

Verr = (Xl (x5)x + Tuy

-19-

which may be written in z-transforms by,

(z - Dy(z) T);(z) + 3T?%u(z)

fl

@-y@ = Tu@

i

or, by breaking the couple, the "advancing forms" of the z-transforms are produced:

y(z) T?2(z + 1)
u(z)) 2(z - 1)?
¥() T

u(z)) z -1

These z-transforms are not in concurrent form. In order to put them in concurrent form
the highest z-power of the output is solved for, by setting the highest z-power of the
input to zero. In this case these operations produce,

zy(z) T2(1 +z71)

u(z) 2(1 - z71)?
2y(2) I
u(z)) 1 -2zt

The zero-order data hold, the first-order data hold and the Ames system display this
shift in their concurrent z-transforms, whereas both the triangular and bilinear forms are
already concurrent and thus do not display any shifts. These operations produce Fig. 6,
which shows that each of these five discrete realization techniques produce different
notation for double integration.

It should be noted that code can be created directly from z-transforms in concurrent

form. For example, for double integration the zero-order hold case of Fig. 6 results
directly in the FORTRAN code,

-20-

YPP
YP
UP

YP
Y
U

2%YP - YPP + (T*%2/2)*%(U + UP)

Note that if both Y and YD (the output and its derivative) are required, the code is even

simpler in this case;

YD + T*U

Y = Y + T*YD + (T**2/2)%*U

where these equations are procedural.

IHOLD = O

T2(1 + 271)

Zero-Order
zy(z)

2(1 - z71)?

ITHOLD = 1

First-Order

zZ
TZ (2 + 221 - z-2) 2y(2)
3(1 - 271)?
Triangular
£(z) IHOLD = 2 @)
z
B T2 (1 + 4z°! + z-2) y
6(1 - z71)?
Bilinear
IHOLD = 3
y(z)

T2(1 + 227t + 272)

4(1 - z71)?

Ames System

IHOLD = 1 JHOLD = 2
-1 - ZY(Z)

T(3 - z271%) T(1 + 2z71)

2(1 - z71) 2(1 - z271)

Fig. 6 - Five Discrete (Concurrent) Realizations

-21-

Now, since f(t) has been defined above by a trigonometric function, we may explore the
time behavior of these algorithms. Both the first integration and the total (double)
integration results are shown, in response to the baseline, f(t). Since this is an open-loop
system, it should be appreciated that errors are amplified well beyond what would be
experienced in closed-loop flight simulation.

With the input "U" being the expression for f(t) given above, the triangular hold solution
and the bilinear solution are directly compared with the baseline solution y(t), also given
above. The advancing solutions, however, may only be compared to the advanced out-
put, namely y(t+T). Alternately (and this is the selected technique for these graphs), the
previous value of the output "Y" is compared to y(t). The three advancing solutions are
the zero-order hold, the first-order hold, and the Ames system (advancing for the first
integration only).

The time series data y(t) are presented in Figs. 7, 8 and 9 by the solid lines. This sys-
tem assumes that the forcing function has an undamped natural frequency of 27, and a
damping factor of 0.1. The input f(t), which is the double derivative of y(t), is shown,
as well as its two integrals. These curves are repeated on each of the three figures. In
order to demonstrate errors, the large cycle time of 100 msec was used (10 samples per
cycle of phenomenon).

In Figs. 7(a) through 7(c) the zero-order data hold formulation is shown. The individual
data points are shown. The stair-step acceleration behavior is seen to produce a velocity
bias in Fig. 7(b). Similarly, the double integral is divergent, as shown in Fig. 7(c).

In Figs. 7(d) through 7(f) the first-order data hold formulation is shown. The extrapola-
tion is shown in Fig. 7(d), and its consequences are shown in Fig. 7(e) for single inte-
gration, and in 7(f) for double integration.

The advancing forms of Fig. 7 involve extrapolation, and for an open-loop system can-
not hope to produce a very good response. However, if an advance is absolutely
required, the first-order data hold is clearly superior to the zero-order data hold.

In contrast, the concurrent forms of Fig. 8 produce a much better response. For the
triangular hold of Figs. 8(a) through 8(c), this occurs because interpolation is used.

For the bilinear transform of Figs. 8(d) through 8(f), the results are seen to be similar to
the triangular hold (although this cannot be said for general transfer functions).

In Fig. 9(a) through 9(c¢) the first-order data hold is repeated from Figs. 7(a) through
7(c). It is shown in comparison with the Ames system of Figs. 9(d) through 9(f), where
the Adams’ algorithm is followed by the trapezoidal algorithm. The velocity data is
identical. However, the position data is slightly improved due to the fact that the sec-
ond integrator uses the triangular data hold.

22—

f(s)/s?

1 T T T
-) (c)
TN = *é -l—o _(.)‘
2 O /| L, A7
Y . P
i | Ao .
- 1 T T T
0 1 2

0012 T ; T
1 — Baseline (c)]
0.08 —]
0.04 — ~

0.00 : , ,
0 1 2

Time
IHOLD = O

f(s)/s?

] o/ico <]
@ o0- : -
o I \J) & -
—'1 l T T
0 1
OZ T T T
Omgy (e)
oA
VRS
0.0+
"“01 T o-0 T T
0 1
0.12 : : :
_ () J
0.08 — -
004": / v 7 O\O\ u . O/O/O$O\O\O\Oj
0.00 , , .
0 1
Time
IHOLD = 1

Fig. 7 — Advancing Holds, Zero and First Order

f(s)/s?

(a)

0.12 . l ;
1l — Baseline (e}
0.08 —]
0.04 - -
0.00 . , ,
0 1 2
Time
IHOLD = 2

(d)

0.2

0.1~

0.0+

Time

IHOLD =

Fig. 8 — Concurrent Holds, Triangular and Bilinear

f(s)/s?

|
~0

(a)

0.2

0.1

0.0

(b)

-0.1

0.05

0.00

Baseline

' |
1

Time

IHOLD =

1

T

f(s)/s

f(s)/s?

,I ¥ l)
d 9/?—? (d>_
@ o- 9 -
Y— | x 6\6 |

N

“1 ‘!' T T
0 1 2

Integration: IHOLD = 1

0.2 T l T
©-q (e)
0.14 7\ .

VN
0.0 -

—01 T o0 1 T
0 1 2

Integration: [HOLD = 2

0.05 e :
| /° \ oy]

o /0 \O
i \ N,
/ Q o/ \o\
| \ :
\O/O

O»OO T l T

0 1 2
Time

Fig. 9 — Advancing Systems,

Ames System

First Order and Ames

C
C

C
C

Q

lelNe el sl o eI oNoNeN oo oo Mo Moo e Ne oo Moo Moo NeNoNoNe oo NoNoNoNeNoleo oMo Ne e leo o lo Mo N o]

TITLE XFRRUN
SUBROUTINE XFRRUN{IMODE,IHOLD ,DT,N,AM,B,SETB,RUNB,X,Y)

R. E. MCFARLAND - NASA - AUGUST 1989
VERSION 1.0, NOV. 1, 1990.

THIS SUBROUTINE WILL HANDLE THE REAL-TIME TRANSITION OF LARGE-ORDER
RATIOS OF LAPLACE TRANSFORM POLYNOMIALS.

XFRSET AND XFRRUN ARE SIMILAR TO THE PROGRAMS FACT AND UPDATE.
THE MAJOR IMPROVEMENTS ARE THAT THREE DIFFERENT DATA HOLDS
ARE NOW POSSIBLE:

IHOLD = 0 FOR THE ZERO ORDER HOLD,
IHOLD = 1 FOR THE FIRST ORDER HOLD, AND
IHOLD = 2 FOR THE TRIANGULAR (TRAPEZOIDAL) HOLD.

IN ADDITION, AS A SERVICE TO TUSTIN USERS (UGH),
IHOLD = 3 FOR THE BILINEAR TRANSFORM SOLUTION
(IN THIS CASE SETB IS NOT USED, HENCE,

XFRSET NEED NEVER BE CALLED).

THE OUTPUT FOR THE ZERO OR FIRST ORDER HOLDS ARE ADVANCED ONE CYCLE.
THE OUTPUT FOR THE TRIANGULAR HOLD IS CONCURRENT WITH YOUR INPUT.
THE OUTPUT FOR THE BILINEAR SOLUTION IS ALSO CONCURRENT.

ALSO, XFRSET AND XFRBOD MAY BE USED TO GENERATE BODE

PLOT DATA FROM YOUR RESULTANT DISCRETE TRANSFER FUNCTIONS.
(NOT A REAL-TIME OPERATION).

THESE OUTPUTS MAY BE USED FOR A DIRECT COMPARISON

TO AN S-PLANE ANALYSIS OF THE ORIGINAL TRANSFER FUNCTION.

BOTH XFRSET AND XFRRUN USE SUBROUTINE BTYPE FOR ERROR MESSAGES.
THE BTYPE I/O ROUTINE IS COMPUTER SPECIFIC FOR REAL-TIME
SIMULATIONS. A COMPUTER-PORTABLE VERSION (CONSISTING

OF ONLY A COUPLE OF LINES OF CODE) IS ALSO AVAILABLE

IN STRIKE ACCOUNTS (THE SIMPLE CODE SHOWN IN EXAMPLE AT END).
DURING MODEL CHECKOUT THE BODE PLOT CAPABILITY USING

XFRBOD (AND SUBROUTINE CINVRT) IS INVALUABLE!

FhkRRE RO FOR REAL-TIME OPERATIONS (TRANSITION) ***

WHENEVER YOUR DENOMINATOR COEFFICIENTS CHANGE SUFFICIENTLY
ENOUGH THAT YOU WISH TO COMPUTE A NEW TRANSITION MATRIX

THEN CALL XFRSET AGAIN. (EXCEPT WHEN IHOLD=3)

NOTE THAT THIS PERMITS A LARGE NUMBER OF NONSTATIONARY

-XFRSET 1-

aoaoaaoacaoaacoaaaoaaQaaan

C
C
C
C
C
C
C
C
C
C
C
C

oleleoloNesNoNoNsNeNeNoNoNeo oo oMo NoR e oMo

C
C
C
C

TRANSFER FUNCTIONS TO TIME-SHARE COMPUTER WORKLOAD.

NO HISTORY IS STORED IN SETB, ONLY THE FORCING FUNCTION
VECTOR AND THE TRANSITION MATRIX.

THESE DO NOT CHANGE WITH EITHER THE INPUT (X) HISTORY,

OR THE NUMERATOR COEFFICIENTS B(I).

SETB IS IDENTIFIED ONLY WITH THE DENOMINATOR POLYNOMIAL.

WHEN IMODE.GT.0
THIS ROUTINE TRANSITIONS THE STATE (INCLUDING NUMERATOR TERMS)
IN OPERATE MODE, JUST LIKE SUBROUTINE UPDATE USED TO DO.

BASED UPON SUBROUTINES FACT AND UPDATE BY:
R. E. MCFARLAND AND A. B. ROCHKIND

SEE: "ON OPTIMIZING COMPUTATIONS FOR TRANSITION MATRICES"
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-28,
NO. 8, JUNE 1978.

AND: "FSE PROGRAM SUMMARY DOCUMENT #4", XFFSET, OCT. 1990
AND: "FSE PROGRAM SUMMARY DOCUMENT #5", XFFRUN, NOV. 1990

PROVIDING XFRSET HAS BEEN CALLED, XFRRUN SOLVES, IN REAL TIME:

IEEENENEEREEEEERE EEEEEEEEEENEIIEI NN
* *

* Y B(M+1)*S**M + B(M)*S**(M-1) + ... + B(2)*S + B(1) *

* - *

¥ X S**N 4+ A(N)*S**(N-1) + ... + A(2)*S + A(1) *
* *

sk ok ok ok % ok ok ok ok sk ok ok o ok ok ok kb ok ok sk ok K ok ok ok % ok ok ¥ ok

IT DOES THIS BY FIRST SOLVING THE TRANSITION PROBLEM,

IEEEENEREREEEEEEREEEEEEREEEREE N

* X S**N + A(N)*S**(N-1) + ... + A(2)*S + A(1) *

* *

s %k ok vk ok % ok ok sk o ok ok ok sk ok sk ok ok ok ok ok % ok %k ok ok ok % ok ok %k %

WHICH GAINS N U’S, L.E. U, UDOT, UDOUBLEDOT, UP TO UNMINUSONEDOT.

IF M.EQ.N, UNDOT IS OBTAINED BY THE LINEAR COMBINATION:
UNDOT = X - A(N)*UNMINUSONEDOT - ... - A(1)*U

-XFRSET 2-

C BUT X IS ONLY KNOWN AT THE INPUT TIME. HENCE, UNDOT HAS A MIXED

C TEMPORAL INDEX IF EITHER THE ZERO OR FIRST ORDER HOLDS ARE USED.

C FOR THIS REASON ONLY THE TRIANGULAR HOLD (CONCURRENT OUTPUT) IS
C RECOMMENDED FOR EQUAL-ORDER SYSTEMS (M = N). (SEE NOTES AT END,
C FOR APPROXIMATIONS EMPLOYED).

C

C IF IHOLD = 3 ALL COEFFICIENTS ARE ASSUMED NONSTATIONARY.

C

s b ok ke 3 sk s sk s sl o sk e sk ol S e ok ok o e R o Ok Sk ek e R

* M CAN BE NO GREATER THAN N *

st sk o s b ok okt ok ok b 3 sk ok ok o Ok o e e e ok e oK K ke e e ok

aaoaaan

c
C PERFORMS THE STATE TRANSITION OPERATION IN OPERATE MODE (IMODE.GT.0).
C IN L.C. MODE,

C THE D.C. GAIN IS B(1)/A(1) IF A(1).NE.0 (OTHERWISE 0).

C NOTE, HOWEVER, THAT BY OVERRIDING RUNB VALUES, ANY

C MILDLY CLEVER PROGRAMMER CAN ESTABLISH ARBITRARY

C INTITIAL CONDITIONS ON ANY OF THE INTEGRATORS IN THE

C SYSTEM BY USE OF APPROPRIATE L.C.-ONLY STATEMENTS

C (IMODE.LT.0) AFTER THE CALL TO XFRRUN.

c

c

C DEFINITIONS s e o e s ok s 3k s ske sk s el ok e sk ok ok ok ok ok ok sde ke o ok s ok ok a8 e s ke s ke s e s sk s ok e sk ode ok ke ok ok s sk ok e ok ek

c

(DIMENSIONS REQUIRED ARE 'AT LEAST’ DIMENSIONS)

FOR REAL-TIME, OR TIME TRANSITION, IMODE IS USED:
IMODE -~ NEGATIVE = 1.C. MODE, POSITIVE = OPERATE MODE.

THOLD -- 0 = ZERO ORDER HOLD (ADVANCED OUTPUT)
1 = FIRST ORDER HOLD (ADVANCED OUTPUT)
2 = TRIANGULAR HOLD (CONCURRENT OUTPUT)
3 = BILINEAR SOLUTION (CONCURRENT OUTPUT)

DT ----- THE INTERVAL OF TRANSITION (SEC).
N -weewm THE ORDER OF THE DENOMINATOR. MUST BE FROM 1 TO 20.

A --- THE DENOMINATOR COEFFICIENT VECTOR. MUST HAVE A DIMENSION
OF AT LEAST N. (A(N+1) IS ASSUMED UNITY.)

M= THE ORDER OF THE NUMERATOR. MUST BE FROM 0 TO 20. BUT NOT
GREATER THAN N.

B --- THE NUMERATOR COEFFICIENTS. MUST BE DIMENSIONED
AT LEAST M+1. B(M+1) IS NOT ASSUMED UNITY.

lolNeNoNeNol s Moo NeNoNoNeoNeNeole o oMo lNo Moo NoNe o Ne!

-XFRSET 3-

C
C SETB - THE BUFFER ASSOCIATED WITH THE DENOMINATOR TRANSFER FUNCTION.

C THIS BUFFER MUST HAVE THE DIMENSIONS OF AT LEAST

(o] N**2+N+1

C

CY --mrmm THE SCALAR OUTPUT.

C

CX -=rmmm THE SCALAR INPUT.

C

C RUNB - ANOTHER BUFFER, CONTAINS THE PAST VALUE OF THE INPUT AND THE
C CURRENT STATES. THIS BUFFER MUST BE UNIQUE FOR EACH X DATA
C HISTORY, AND BE DIMENSIONED AT LEAST N + 1.

C

C RUNB KEEPS TRACK OF THE STATE TRANSITION PROCESS, IN

C ACCORDANCE WITH UNIQUE INPUT X DATA HISTORY.

C HENCE, EVEN WITH IDENTICAL DENOMINATORS, DIFFERENT RUNB

C BUFFERS ARE REQUIRED IF THE INPUTS OR IHOLD ARE DIFFERENT.

(o]

C THE INDIVIDUAL STATES ARE LINEARLY COMBINED WITH YOUR

C NUMERATOR COEFFICIENTS HEREIN IN ORDER TO FORM THE OUTPUT.
C

C IF ONLY THE B(I) ARE DIFFERENT IN 2 TRANSFER FUNCTIONS,

(o] AND THEY HAVE THE SAME INPUT X, THEN THEY MAY SHARE THE

C SAME RUNB AS WELL AS SETB (IHOLD MUST ALSO BE THE SAME).

C

C NOTE THAT VARIOUS X AND RUNB COMBINATIONS MAY SHARE ONE

C SETB PROVIDING ONLY THAT THE DENOMINATORS ARE THE SAME.

C

C

C**

C**

C

C FUNCTIONS ONLY OF THE DENOMINATOR POLYNOMIAL:

C

C BUFFER DEFINITIONS: (SIZE = N**2+ N+ 1)

C

C SETB(1) C1 FIRST ELEMENT, FORCING FUNCTION VECTOR

C SETB(2) C2 SECOND ELEMENT, FORCING FUNCTION VECTOR
C

CSETB(N+1) CON+1 N +1 ELEMENT, FORCING FUNCTION VECTOR
c

C SETB(N+2) F(1,1) TRANSITION MATRIX

C SETB(N+8) F(1,2) TRANSITION MATRIX

C SETB(I+1+J*N) F(J,J) TRANSITION MATRIX

C SETB(N**2+N+1) F(N,N) TRANSITION MATRIX

c

c

C FUNCTIONS OF SETB, IHOLD, AND THE INPUT X:
c

-XFRSET 4-

C VECTOR DEFINITIONS: (SIZE =N + 1)

c
C RUNB(1) Ul FIRST STATE

C RUNB(2) U2 2ND STATE (1ST DERIV)

C RUNB(N) UN NTH STATE (N-1 DERIV)

C RUNB(N+1) XK-1 PAST VALUE OF INPUT X
c

c

c**

C CLASSICAL STATE SPACE SOLUTION TECHNIQUES

e sk ok ok o s sl ok ok s s obe ofe s sk ofe ok o o sbe ok o ok ok ode ok ok ok ok ok ke o ok ok ok e o ok ok ode o o s b ol e ok o ok ok ok 3k o ok ke o e ok sk ok ok ko ok eokok Ok
C

aa
s
&
&
E
2
E
=
o
Z
o)
&
o
&
e
&
<
0
wn
o
5)
<
S|
o
w
o

FOR A ZERO-ORDER HOLD (IHOLD = 0), THE ADVANCED STATES ARE:

o)l ol 1e@) |
[u(2)l el 1e®) |
b =1IFl T+ 1. IX(K)

[I
[UN)IK+1 [UN)IK [C(N+1)|

FOR A FIRST-ORDER HOLD (IHOLD = 1), THE ADVANCED STATES ARE:

@)l ol 1e@i el

1u(2)l @)l el Ic(2)I

b= FIL T+ 1 IX(EK) + | |X(K)-X(K-1)]/T
(I N I B

[U(N)IK+1 U)K JC(N+1)] |C(N)|

FOR A TRIANGULAR HOLD (IHOLD = 2), THE CONCURRENT STATES ARE:

o@F 1wl 1c@) | el

we)n we)l 1eE)l ic()l

o= 0Fl 1+ 1. IX(K-1) + |- JX(K)-X(K-1))/T
(R (I

UMK JUN)K-1 |C(N+1)| lcN)I

FORM FORCE-AND-MOMENT-PROPORTIONAL QUANTITIES WITH TIME
APPLICABILITY CONCURRENT WITH THE PILOT INPUT POINT T(K).

POSITIONS APPLICABLE AT TIME T(K+1) UP TO STRIKE (OR SMART).

(ol ol ool e Moo o NoNo Moo NoNoNeNoleNoloNoNo Moo oMo No oo Mol ol e Mol

Q

THE LINEAR COMBINATION PROBLEM IS SOLVED BY:

«Q

-XFRSET 5-

LEAVE THE TRANSITION OF FORCES AND MOMENTS TO VELOCITIES AND

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
(o]
C
C
C
C
C
C
C
C
C
C

Y = B(M+1)*U(M+1) + B(M)*U(M) + ... + B(1)*U(1)

AND THE ONLY PROBLEM OCCURS WHEN M = N, IN WHICH CASE
U(M+1) = U(N+1) IS NOT AVAILABLE FROM THE STATE VECTOR.

THIS IS NO PROBLEM WHEN THE OUTPUT IS CONCURRENT WITH THE INPUT.
THIS QUANTITY IS AVAILABLE FROM A CONSIDERATION OF THE DENOMINATOR
TRANSFER FUNCTION:

U(N+1) = X - A(N)*U(N) - A(N-1)*U(N-1) - ... - A(1)*U(1)
WHERE EVERYTHING IN THIS EQUATION APPLIES AT TIME K, LE.,
(S**N)U(K) = X(K) - A(N)*(S**(N-1))U(K) - ... - A(1)*U(K)

WHEN THE OUTPUT IS ADVANCED, K (ABOVE EQN) GOES TO K+1, AND X(K+1)

IS UNKNOWN. IT CANNOT BE APPROXIMATED FOR GENERAL TRANSFER FUNCTION
BEHAVIOR. HENCE, IT 1S ASSUMED THAT THE VALUE AT THE BEGINNING OF

THE NEXT CYCLE IS THE SAME AS IT WAS AT THE BEGINNING OF THIS CYCLE.

IF YOU DESIRE ANOTHER ASSUMPTION, THIS IS POSSIBLE BY REDUCING

THE ORDER OF THE NUMERATOR BY ONE AND CREATING YOUR OWN DERIVATIVE
DATA AS THE INPUT.

THE TRIANGULAR HOLD FORMULATION (IHOLD = 2) IS PREFERRED IN ALL
CASES. IT HAS THE BEST PERFORMANCE CHARACTERISTICS, AS MAY BE
SEEN FROM BODE PLOT OUTPUTS (USE SUBROUTINE XFRBOD), IT'S THE

ONLY PROGRAM IN THE LITERATURE THAT ACTUALLY SHOW YOU WHAT YOU
WILL GET IN REAL TIME SIMULATION.

FOR REAL-TIME CONTROL SYSTEM MODELING AND AIRCRAFT FORCE/MOMENT
GENERATION, THE OUTPUTS SHOULD BE CONCURRENT WITH THE PILOT INPUT
TIME. THIS USUALLY DICTATES CONCURRENCY IN THE MODEL, SO THAT

THE TRIANGULAR HOLD IS A NATURAL. ALSO, NO PROBLEMS WITH EQUAL
ORDER SYSTEMS.

EXTERNAL DIMENSIONS

DIMENSION A(1),SETB(1),B(1),RUNB(1)

C INTERNAL DIMENSIONS

aaogaQaaaQ

Q

DIMENSION YPRIME(20),AK(20)

S s s ke sk e sk e ok e ok b ke ok ok sk ok sk ok

* EXECUTABLE CODE *

o 3 e o 3R ok ok ok ke ok o ok ok o R OR

NP1=N+1

IF(IMODE.GT.0) GO TO 270

~-XFRSET 6-

e e o ke sk ske e ok 3k o e ke

*1.C. MODE *

b o 2k ok ok ot ok s ok sk sk e

QaQQ

Q

C TRANSFER FUNCTION RESTRICTIONS
C THESE CHECKS REQUIRED HERE BECAUSE XFRSET DOES NOT CARE WHAT THE
C NUMERATOR IS:

IF(M.GT.N) THEN

CALL BTYPE(36, XFRRUN: NUMERATOR ORDER TOO LARGE. ")

STOP

END IF

IF(M.LT.0) THEN

CALL BTYPE(36,' XFRRUN: NUMERATOR ORDER TOO SMALL.)

STOP
END IF
C
IF(N.EQ.0) THEN
IF(A(1).NE.0.0) THEN
Y = X*B(1)/A(1)
ELSE
Y =00
END IF
RETURN
END IF
C
C 1.C. OPERATIONS, ZERO STATE DERIVATIVES.
C
DO 250 I=1,N
250 RUNB(I) = 0.0
(o]

C CHECK FOR EQUAL ORDER SYSTEMS WITH ALL A(I)=0 (EXCEPT N+1)
IF(M.NE.N) GO TO 256
DO 254 I=1,N
IF(A(I).NE.0.0) GO TO 256
254 CONTINUE
Y = B(NP1)*X
GO TO 265
c
256 CONTINUE
o
IF(A(1).NE.0.0) THEN
RUNB(1) = X/A(1)
END IF
c
260 Y = B(1)*RUNB(1)
265 CONTINUE
C SAVE PAST VALUE OF INPUT FOR THIS INPUT/NUMERATOR COMBINATION.
RUNB(NP1) = X
IF(IHOLD.LE.2) RETURN
C THE CELL USED FOR PAST VALUE OF HIGHEST STATE DERIVATIVE
C WHEN THE BILINEAR TRANSFORM USED.

-XFRSET 7-

RUNB(NP1) = X - A(1)*RUNB(1)
RETURN

o ke sk ok ok ke s ke ok ok e ok ok Stk ok K

* OPERATE MODE *
ke s ok ot ok ok ok ofe ok ok ok e ofe sk ok ok sk ok
270 CONTINUE
C BILINEAR JUMP IN OPERATE MODE
IF(IHOLD.GT.2) GO TO 500

QaaaQa

c
C RUNB(N + 1) IS USED FOR DEPOSIT OF PREVIOUS INPUT.
XPREV = RUNB(NP1)
IF(IHOLD.GT.0) THEN
DEP = (X - XPREV)/DT
ELSE
DEP = 0.0
END IF
c
C TRANSITION
DO 290 I=1,N
SUM =00
IPINP2 = N*I + 1
DO 280 J=1,N
SUM = SUM + SETB(IPINP2 + J)*RUNB(J)
280 CONTINUE
200 YPRIME(I) = SUM
c
C BUT THE CURRENT INPUT IS USED AS XPREV FOR ZERO AND FIRST ORDER HOLDS.
C NOTE THAT THE CURRENT INPUT IS IN DEP FOR THE TRIANGULAR HOLD.
IF(IHOLD LT.2) XPREV = X
c
C COMBINATION OF TRANSITION TERMS WITH FORCING FUNCTION TERMS.
DO 300 I=1,N
300 RUNB(I) = YPRIME(I) + SETB(I+1)*XPREV + SETB(I)*DEP
c
RUNB(NP1) = X
IF(M.NE.N) GO TO 370
c
C FOR M.LT.N EVERYTHING IS GREAT. GOODBY.
c
C AND EVEN IF M.EQ.N,
C EVERYTHING IS ALSO GREAT UP TO HERE (IN ACCORDANCE WITH
C CLASSICAL THEORY). HOWEVER, FOR EQUAL ORDER SYSTEMS,
C IN ORDER TO COMBINE THE NUMBERATOR TERMS, WE
C NEED THE NTH STATE DERIVATIVE (WHEN M = N).
C THIS IS GREAT FOR THE TRIANGULAR DATA HOLD, WHERE
C ALL TERMS ARE CONCURRENT SO THAT THE $**N TERM IS
C AVAILABLE AT K FOR NUMERATOR COMBINATIONS. THE PERTINENT
C LINEAR-COMBINATION EQUATION IS:
c
C (S**N)U(K) = X(K) - A(N)*(S**(N-1))U(K) - ... - A(1)*U(K)

-XFRSET 8-

C
C HOWEVER, FOR BOTH THE ZERO AND FIRST ORDER SYSTEMS, WHEN
C M=N, AN ERROR IS INTRODUCED BELOW BECAUSE AN ASSUMPTION
C MUST BE MADE ABOUT WHAT THE INPUT WILL BE ON THE NEXT CYCLE!
C (REPLACE K ABOVE WITH K+1 AND DISCOVER THAT X(K+1) REQUIRED).
C
C FOR THE ZERO-ORDER AND FIRST-ORDER DATA HOLDS, THE BEST ASSUMPTION
C FOR ARBITRARY TRANSFER FUNCTIONS IS THAT THE INPUT VALUE REMAINS
C CONSTANT. SPECIFIC CASES MAY CALL FOR DIFFERENT ASSUMPTIONS, AND
C THESE ARE POSSIBLE WITH A LITTLE EXTERNAL CODING FROM YOU...
C AT LEAST FOR THE ZERO ORDER HOLD CASE, THE BEST ASSUMPTION FOR
C RANDOM INPUTS IS THAT X(K+1) = X(K).
C
C CONSULT SUBROUTINE XFRBOD'S OUTPUTS TO DETERMINE THE CHARACTERISTICS
C OF YOUR TRANSFER-FUNCTION/DATA-HOLD REQUIREMENTS.
C
C FOR THE ABOVE REASONS THE ZERO ORDER AND FIRST ORDER DATA
C HOLD SYSTEMS ARE NOT RECOMMENDED FOR EQUAL ORDER SYSTEMS (M=N).
C
C AS A POSSIBLE ALTERNATIVE:
C YOU MIGHT, FOR INSTANCE, CREATE YOUR OWN PSEUDO-INPUT AS THE
C DERIVATIVE OF THE REAL INPUT, THEREBY REDUCING M SO THAT IT
C IS LESS THAN N. WHEN YOU DO THIS, YOU WILL CERTAINLY GAIN AN
C APPRECIATION FOR THE PROBLEM OF MATCHING TEMPORAL INDICES.
C
Y=X
DO 360 I=1,N
Y =Y - A(I)*RUNB(I)
360 CONTINUE
C
Y = B(M+1)*Y
MP1 =M
GO TO 380
c
370 Y = 0.0
MP1=M+1
C
380 CONTINUE
C
C ADD IN THE REMAINING NUMERATOR TERMS
DO 390 I=1MP1
390 Y = Y + B(I)*RUNB(I)
C
RETURN
(o]
© R R RO SRR R K Kk
C WHEN IHOLD = 3, A STATE SPACE SOLUTION IS NOT OBTAINED.
C THE BILINEAR TRANSFORM, WHICH IS HERE PRESENTED IN GENERAL
C SOLUTION FORM, IS ALSO CALLED THE TUSTIN METHOD. IT I8 AN
C ALGEBRAIC SOLUTION, AND SHOULD NOT BE USED FOR NOTCH FILTERS.
C (FREQUENCY-AXIS DISTORTION OCCURS).

-XFRSET 9-

C
500 CONTINUE
C NONSTATIONARY COEFFICIENTS O.K., AND XFRSET NOT USED.
XK = 0.5*DT
ZK = 1.0
DSUM = 1.0

DOKIOI= 1IN
AK(I) = ZK
ZK = ZK*XK
510 DSUM = DSUM + ZK*A(NP1 - 1)
C
ASUM = 0.0
DO 530 J=1,N
ESUM = 0.0
DO 520 NN=J,N
NNP1=NN+1
520 ESUM = ESUM + A(NNP1-J)*(RUNB(NN) + XK*RUNB(NNP1))
530 ASUM = ASUM + AK(J)*ESUM
o]
ASUM = (X - ASUM)/DSUM
SUMS = ASUM

DO 5401 =N,1,-1
SUMS = RUNB(I) + XK*(SUMS + RUNB(I+1))
540 YPRIME(I) = SUMS
c
DO 550 I=1,N
550 RUNB(I) = YPRIME(I)
c
RUNB(NP1) = ASUM
c
GO TO 3870
c
C END OF CODE.......orvvemrrrrririrernrinnes
c

3 e ok o st e ok o o ok e oSk o o ok Sk

C
C * SUGGESTION AREA *
C

o8 o e ok ok sk ok s ok ok ok ok ok ke e ke ok ok

c

C 3k ke sk ok st b o o ok ok ke s 2k ok ke s sk o ok e e sk ok ok o sk ok ok ok o sk sk ok ke ke s sk ok ok ke ok sl sk e ok sk sk ke ok ok ok ok ok ok o e ok

C SUBROUTINE BTYPE, IF YOU DO NOT HAVE IT IN A NON-REAL-TIME
C APPLICATION (REMOVE COMMENTS)

C SUBROUTINE BTYPE(NCHARS,CHAR)

C CHARACTER*1 CHAR(NCHARS)

C WRITE(*'(1X,60A1)’)(CHAR(I),I=1,NCHARS)
C RETURN

C END

c

s he S ok ot e sk o o e ok s o ot e ok s s s ok sk o s ok ok s s ok sk o s ke ok o o ke ol ok s ke sk o e ke sk ok ke ok ok skl ok ok s ok o e ok

END

-XFRSET 10-

